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Games

How do people behave in strategic situations? When my payoff depends
not only on my choice but also on other peoples’ choices, I have to
consider how they think... and how they think I think, and so on. This is
the object of study in the field of game theory.

Here we will look at some ways in which people systematically deviate
from the ‘standard’ predictions of game theory.
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Games

In this section:

1 Games and strategies

2 Dominance

3 Nash equilibrium

4 Mixed strategies and reaction functions

5 Level k reasoning

6 Backward induction

7 Subgame perfect Nash equilibrium

8 Repeated games in finite and infinite time

9 Community enforcement
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Games

The object of interest is a game. The components of a game are:

1 Players: a list of all relevant players.

2 Moves: what each player can do.

3 Information: what each player knows when they take an action.

4 Payoffs: payoffs (vNM utilities) for each player as a function of every
player’s actions.

The game is our model, so we would like to analyze games that capture
some interesting features of the (economic) problem. Given this, our
objects of interest:

Strategy: a complete contingent plan of action for each player.

Strategy profile: a collection of strategies for all players.

Solution concept: a strategy profile that is a “likely” way to play the
game.
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Strategic form

Until further notice, we’re working with games of complete information.

The normal form or strategic form of a game is
1 the set of players: N
2 the pure-strategy space (the set of strategies for each player i): Si

3 a payoff function for each player i : ui : S1 × ...× Sn → R

Payoffs are numbers that represent the players’ preferences over the
set of possible outcomes

But it’s important to remember that they do not have to be the same
as monetary payoff

Underdetermination of models

“If there is one hypothesis that is consistent with the available evidence,
there are always an infinite number that are.” - Friedman

See also Borges “The Library of Babel”
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Strategic form

For finite two-player games, we can represent this as a matrix.

L R
T 2, 2 2, 0
B 3, 0 0, 9

Player 1 is the “row” player; her pure strategies are T and B.

Player 2 is the “column” player; his pure strategies are L and R.

Each cell is a pure strategy profile: e.g. if 1 plays T and 2 plays R,
we end up in the top-right.

The numbers are payoffs: at (T ,R) player 1 gets 2 and player 2 gets
0.
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Mixed strategies

A pure strategy is a strategy in which a player plays actions for sure. A
mixed strategy is a probability distribution over pure strategies.

L R
T 2, 2 2, 0
B 3, 0 0, 9

For example, player 1 could play T with probability 3
4 and B with

probability 1
4 .

Randomization is independent of opponents’.

Payoffs are expected values of corresponding pure-strategy payoffs
(invoking vNM utility).

A pure strategy is just a degenerate mixed strategy.
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Best responses

A strategy for i is a best response to the strategies of the other players if
there exists no other strategy for i that yields a higher payoff.

Swerve Don′t
Swerve 0, 0 −4, 4

Don′t 4,−2 −10,−10

In Chicken, if my opponent plays “swerve”, my best response is not to
swerve. If my opponent plays “don’t”, my best response is to swerve.

Best responses are to a fixed strategy profile for the other players.

A strategy that is strictly dominated is never a best response.
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Nash equilibrium

A foundational solution concept in game theory is Nash equilibrium.

A strategy profile constitutes a Nash equilibrium of a game if every player’s
strategy is a best response to the strategies played by the other players.

C D
C −1,−1 −10, 0
D 0,−10 −5,−5

In the Prisoner’s Dilemma, (D,D) is a Nash equilibrium.

Player 1

Player 2
L R

U 4, 5 1, 0
D 0, 2 3, 1

What about this one?
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Dominated strategies

By the way:

A strategy for player i is strictly dominated if there exists another
strategy for i that yields a greater payoff for all strategy profiles of the
other player(s).

A strategy for player i is weakly dominated if there exists another
strategy for I that yields a payoff at least as high for all strategy
profiles of the other player(s) and a greater payoff for at least one
profile.

C D
C −1,−1 −10, 0
D 0,−10 −5,−5

The Prisoner’s Dilemma is a bit boring as a one-shot game because it’s
solvable in one step by elimination of strictly dominated strategies

C is strictly dominated by D
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Nash equilibrium

One more:

Player 1

Player 2
L C R

U 3, 0 1, 2 2, 5
M 1, 1 0, 0 1, 2
D 0, 3 2, 4 3, 2

Nash equilibrium has a flavor of fulfilled expectations: best responses
given others’ strategies.

Or no regret: if I could go back and change my strategy but everyone
else had to stay the same, could I have done better?

Again it’s recursive: your action is a best response to my action which
is a best response to your action which is a best response to my
action...

What must the players be thinking?
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Meeting in New York

Consider this coordination game:

A B
A 1, 1 0, 0
B 0, 0 1, 1

There are Nash equilibria at (A,A) and (B,B).

There is another Nash equilibrium. Where?
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Meeting in New York

A B
A 1, 1 0, 0
B 0, 0 1, 1

Say player 2 plays a mixed strategy: A with probability p and B with
probability (1− p).

If player 1 plays A:

u1(A) = pu1(A,A) + (1− p)u1(A,B) (1)

= p (2)

If player 2 plays B:

u1(B) = pu1(B,A) + (1− p)u1(B,B) (3)

= (1− p) (4)

If p > 1− p, 1’s best response is A; if not, B.
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Meeting in New York

A B
A 1, 1 0, 0
B 0, 0 1, 1

But if player 2 plays precisely p = 1− p (that is, p = 1
2) then player 1 is

indifferent between playing A and B, or any mix of the two.

Any of their strategies, pure or mixed, is a best response!

In particular, one best response has player 1 play a mixed strategy of
half probability each across A and B

Since similar logic holds for player 2, there is a Nash equilibrium in
which both players randomize over the two actions with equal
probability

So this game has three Nash equilibria: (A,A), (B,B) and the mixed
strategy equilibrium with each player choosing A with probability 1

2 .
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Nash equilibria in Chicken

Chicken has Nash equilibria in pure strategies at the off-diagonals.

Swerve Don′t
Swerve 0, 0 −4, 4

Don′t 4,−2 −10,−10

Is there one in mixed strategies? Say 2 randomizes with probability p on
“swerve”. Player 1 is indifferent between “swerve” and “don’t” if:

U(swerve) = U(don′t) (5)

0p + (−4)(1− p) = 4p + (−10)(1− p) (6)

p =
3

5
(7)
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Nash equilibria in Chicken

Swerve Don′t
Swerve 0, 0 −4, 4

Don′t 4,−2 −10,−10

Now say 1 randomizes with probability q on “swerve”. Player 2 is
indifferent between “swerve” and “don’t” if:

0q + (−2)(1− q) = 4q + (−10)(1− q) (8)

q =
2

3
(9)

So if

Player 1 is playing a mixed strategy with probability 2
3 on “swerve”,

and

Player 2 is playing a mixed strategy with probability 3
5 on “swerve”,

both players are best responding to the other: Nash equilibrium.

Note that the probability of, for example, a crash (i.e. neither
swerves) is 1

3 ∗
2
5 = 2

15 .
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Reaction functions

One way to see Nash equilibria in mixed strategies in 2x2 games
graphically is with reaction functions.

These graph each player’s best response as a function of the
probability the other player is putting on one of her two actions.

Where reaction functions intersect, we have a Nash equilibrium.

We’ll draw reaction functions for Chicken
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Reaction functions

Figure: The space for drawing reaction functions
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Reaction functions

Figure: Constructing the row player’s best response

Jim Campbell (UC Berkeley) Games Summer 2021 19 / 140



Reaction functions

Figure: Constructing the row player’s best response
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Reaction functions

Figure: Constructing the column player’s best response
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Reaction functions

Figure: Constructing the column player’s best response
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Reaction functions

Figure: The finished product
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Reaction functions

Figure: Intersections are Nash equilibria
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Reaction functions

We can start to see graphically the fixed point concept of Nash equilibrium

Very loosely speaking, this is the logic of the foundational result that
Nash equilibria exist in every finite strategic-form game

In “almost all” finite strategic forms there are a finite and odd
number of Nash equilibria (Wilson 1971)

(But there are games with an even or infinite number of Nash
equilibria)
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Mixed strategies

How can we interpret a mixed-strategy Nash equilibrium?

Do people randomize?

Why mix? All pure strategies played with positive probability in the
mixed-strategy NE yield the same payoff as the mixed strategy.

Population frequencies: evolutionary game theory.

‘Mixing’ could be an artifact of unobservable decision process by the
player. But is this a problem? We will see more along this line later in
games with ‘types’ of players.

Evidence from sports has been used to ‘test’ whether players actually mix
optimally: Palacios-Huerta (1996) uses penalty kick data, Kovash & Levitt
(2009) NFL run/pass data.
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Matching pennies

Let’s work through the steps to find the Nash equilibrium for this game:

Player 1

Player 2
Heads Tails

Heads 1,−1 −1, 1
Tails −1, 1 1,−1

In zero-sum games like this one equilibrium strategies require
unpredictability

Maximum unpredictability means making your opponent’s like as
difficult as possible—a minimax strategy means minimizing the
maximum payoff your opponent can earn

Think of how to play rock-paper-scissors optimally...

The issue is that people are in general not that good at randomizing
(we will explore this in more detail in the Beliefs topic)
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Mixed strategy Nash in the wild

Palacios-Huerta (2003): test whether highly motivated professionals play
according to John von Neumann’s Minimax theorem and mixed strategy
Nash equilibrium

Setting: penalty kicks in soccer
I Can you describe why this might work as an empirical setting for this

question?
I Can you think of any other settings that might work? Or why other

settings might not work?

1417 penalty kicks taken in professional games from 1995-2000,
largely from Spain, Italy, and England

Observe choices made by individual goalkeepers and kickers over time
(i.e. across many penalties)
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Palacios-Huerta (2003)
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Palacios-Huerta (2003)

Statistical tests of the data suggest (i) winning probabilities are
identical across strategies, (ii) players’ choices are independent draws
from a random process, both consistent with minimax/MSNE

This means choices don’t depend on previous choices, opponents’
previous choices, or past outcomes
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Thinking about thinking about strategies

How do people think about how other people think? Why does it matter?

Nash equilibrium and iterated dominance solution concepts are
‘complicated’ in a couple of important ways

First, in many interesting settings it might be difficult for a player to
compute which strategies are part of an equilibrium

Second, some solution concepts require recursive reasoning on players’
rationality

Applying game theory is abstract modeling, so we aren’t necessarily
trying to capture behavior literally, but...

Is there a way to account for players’ thought processes?

Would including this in a solution concept improve our ability to
predict the outcome of games?
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Thinking deeply

Keynes, from the General Theory, comparing the stock market to a beauty
contest prediction game:

“It is not the case of choosing those which, to the best of one’s
judgment, are really the prettiest, nor even those which average
opinion genuinely thinks the prettiest. We have reached the third
degree, where we devote our intelligences to anticipating what
average opinion expects the average opinion to be. And there are
some, I believe, who practice the fourth, fifth, and higher degrees.”
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Level-k reasoning

One model of a player’s thought process is level-k reasoning.

L0: level 0 is an ‘unsophisticated’ player who chooses from his
available strategies by some heuristic.

I Uniform distribution over available pure strategies (picking at random)
I Focal strategy

L1: a level 1 strategy is a best response to the belief that opponents
play level 0.

L2: a level 2 strategy is a best response to the belief that opponents
play level 1.

... Lk: a level k strategy is a best response to the belief that
opponents play level k − 1
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Level-k reasoning

The types L1 and up can be viewed as completely rational and
possessing a perfect model of the game...

But a simplified idea of other players.

This doesn’t have the fixed point characteristic of our usual
equilibrium solution concepts.

May be most useful in modeling behavior in novel situations (players
have limited experience from which to predict other players’ behavior)
or in cases with multiple equilibria.

Another, similar approach that we’ll think about is to have Lk players
best respond to some belief about the distribution of lower types and
ignoring higher types.
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Ranked coordination

Ranked coordination:

Empire State Grand Central
Empire State 10, 10 0, 0

Grand Central 0, 0 1, 1

Take L0 to be a uniform distribution over pure strategies.

What is the L1 strategy for the row player?

π(empire) =
1

2
10 +

1

2
0 = 5 (10)

π(grand) =
1

2
0 +

1

2
1 =

1

2
(11)

L1 row player chooses Empire State.

And so L2 column player chooses Empire State...

Jim Campbell (UC Berkeley) Games Summer 2021 35 / 140



Ranked coordination

Ranked coordination:

Empire State Grand Central
Empire State 10, 10 0, 0

Grand Central 0, 0 1, 1

Take L0 to be a uniform distribution over pure strategies.

What is the L1 strategy for the row player?

π(empire) =
1

2
10 +

1

2
0 = 5 (10)

π(grand) =
1

2
0 +

1

2
1 =

1

2
(11)

L1 row player chooses Empire State.

And so L2 column player chooses Empire State...

Jim Campbell (UC Berkeley) Games Summer 2021 35 / 140



Ranked coordination

Ranked coordination:

Empire State Grand Central
Empire State 10, 10 0, 0

Grand Central 0, 0 1, 1

Take L0 to be a uniform distribution over pure strategies.

What is the L1 strategy for the row player?

π(empire) =
1

2
10 +

1

2
0 = 5 (10)

π(grand) =
1

2
0 +

1

2
1 =

1

2
(11)

L1 row player chooses Empire State.

And so L2 column player chooses Empire State...

Jim Campbell (UC Berkeley) Games Summer 2021 35 / 140



Ranked coordination

Empire State Grand Central
Empire State 10, 10 0, 0

Grand Central 0, 0 1, 1

Row player Column player

L0 Random Random

L1 Empire State Empire State
L2 Empire State Empire State
L3 Empire State Empire State

Relationship to ‘focal’ equilibria?
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Battle of the sexes

The ‘battle of the sexes’ game:

Boxing Opera
Boxing 2, 1 0, 0
Opera 0, 0 1, 2

Take L0 to be a uniform distribution over pure strategies.

What is the L1 strategy for the row player?

π(boxing) =
1

2
2 +

1

2
0 = 1 (12)

π(opera) =
1

2
0 +

1

2
1 =

1

2
(13)

L1 row player chooses Boxing.

And so L2 column player chooses Boxing...
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Battle of the sexes

Boxing Opera
Boxing 2, 1 0, 0
Opera 0, 0 1, 2

Row player Column player

L0 Random Random

L1 Boxing Opera
L2 Opera Boxing
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Rock-paper-scissors

Rock-paper-scissors:

Rock Paper Scissors
Rock 0, 0 0, 1 1, 0

Paper 1, 0 0, 0 0, 1
Scissors 0, 1 1, 0 0, 0

Take L0 to be a uniform distribution over pure strategies.

What is the L1 strategy for the row player?

π(rock) = π(paper) = π(scissors) =
1

3
1 +

1

3
1 +

1

3
1 =

1

3
(14)

L1 row player chooses to mix with equal probability.

But this is not at all unique since any strategy gives expected payoff
1
3 .
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Rock-paper-scissors

Rock Paper Scissors
Rock 0, 0 0, 1 1, 0

Paper 1, 0 0, 0 0, 1
Scissors 0, 1 1, 0 0, 0

Row player Column player

L0 Random Random

L1 Random Random
L2 Random Random
L3 Random Random
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Changing L0

Rock-paper-scissors:

Rock Paper Scissors
Rock 0, 0 0, 1 1, 0

Paper 1, 0 0, 0 0, 1
Scissors 0, 1 1, 0 0, 0

Take L0 to be Rock.

What is the L1 strategy for the row player?

π(rock) = π(scissors) = 0 (15)

π(paper) = 1 (16)

L1 row player chooses paper.
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The beauty contest

Everyone will write down an integer between 0 and 100 (inclusive).

I will collect the numbers, calculate the average, and multiply the
average by two-thirds. Call the result x .

The player who wrote down the number that is closest to x will win
$10.

NE at all picking 0 or all picking 1.
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Level-k in the beauty contest

Everyone will write down an integer between 0 and 100 (inclusive).

I will collect the numbers, calculate the average, and multiply the
average by two-thirds. Call the result x .

The player who wrote down the number that is closest to x will win
$10.

Let L0 be random over pure strategies: that is, on average L0 plays 50.

If other players are L0, what does an L1 player do?
2
3 ∗ 50 = 331

3 : if others are L0, the best response—the L1 strategy is
to play around 33.

Note the minor point we don’t have the L1 player account for their
impact on the average, capturing either a large number of players or
‘naive’ play by L1.
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Level-k in the beauty contest

Everyone will write down an integer between 0 and 100 (inclusive).

I will collect the numbers, calculate the average, and multiply the
average by two-thirds. Call the result x .

The player who wrote down the number that is closest to x will win
$10.

L2 best responds to the belief that all opponents are L1.

L2 plays 2
3 ∗ 33 = 22.

L3 plays 2
3 ∗ 22 ≈ 15.

...

L∞ plays 0.
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The beauty contest

Bosch-Domènech et al (2002) categorize some possible reasoning
processes:

1 Fixed point: zero is the unique equilibrium; unilateral deviation from
zero will not win.

2 Iterated deletion of weakly dominated strategies: rational player never
chooses > 66; if she believes others are rational never chooses > 44;
iterate to zero.

3 Iterated best reply: level-k reasoning; L0 random so on average 50; L1

50 ∗ 2
3 ; Lk 50 ∗ 2

3

k
. Model as if all players think they’re one level

deeper than everyone else.

4 Iterated best reply II: same as above but allow players to hold beliefs
that others are at more than one level of reasoning.

5 Experimenters: run an experiment!
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Experimental evidence

Figure: Results from the first newspaper experiment reported in Bosch-Domènech
et al (2002)
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Experimental evidence

Figure: Results from the third newspaper experiment reported in
Bosch-Domènech et al (2002)

Spikes at 33 and 22... evidence of L1 and L2 types?

Spike in the neighborhood of zero... evidence of L∞? Of ‘equilibrium’
thinking?

Small spike at 100... what are these people up to?
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Explanations from experimental subjects

From Bosch-Domènech et al:

“I choose 1. This is what is nearest to x = 0, which is the only
number equal to 2

3 of itself. Logical answer.”

Fixed point a.k.a. Nash equilibrium reasoning.

“I choose the number 15.93. The reasoning is the following: I assume
I 10% do not have a clue and pick the mean 50
I 20% give a naive answer: 33 = 50*2/3
I 50% go a second round: 22 = 33*2/3
I 5% go a third round: 14 = 22*2/3
I 5% are really devious and choose 10 = 14*2/3
I 10% are crazy mathematicians who choose 1.”

Iterated best reply with a conjecture about the distribution of types.
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Explanations from experimental subjects

“If everybody would choose 100, the maximum number that could be
chosen is 66.6. Therefore, theoretically nobody will send a number
over 66.6 and, if you multiply this by 2/3 we get 44.4. Therefore, in
theory, nobody should be sending either a number over 44.4.
Following this reasoning process the only number that should be sent
is 1. However, I understand that many different people participate in
this game and not everybody will apply the reasoning process
explained above. Therefore, and taking into account that the majority
of people would go all the way up to 1, I choose 6.8.”

Iterated dominance plus some extra ‘secret sauce’ for rounding/trembling.
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Explanations from experimental subjects

“If all the numbers had the same probability of being chosen, the
mean would be 50 and the choice should be 2

350 = 33.33. However, I
have estimated a percentage of deviation around 33.33 of 10% and,
there- fore, I choose the number 30.”

Level-1(ish) reasoning.

“In case that all numbers are equally distributed, the average will be
50. 2

3 of that is about 33. Since the readers of Spektrum are certainly
not the dumbest, they will all get to 33 at the first step. However, 2

3
of that is 22. Since certainly all will calculate this, one has to take 2

3
of that.... The series continues ad infinitum and at the end you get 0!
However, I choose, despite that logic, 2.32323.”

Level-∞(ish) reasoning.
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Explanations from experimental subjects

“I decided to run an experiment with a group of friends. Since I
believed that the sample was representative of the participants in the
general experiment, I assumed the result of the experiment would be
a good indicator of the solution. People used the following reasoning.
One said simply the mean, 50 (!!!). Some others mul- tiplied 2

3 by 50
and said 33.33. One said 25 because ‘today is the 25th’. In some
other cases people said 1, or a number close to 1 even though in one
case the reason was ‘to pick a number at random’. The mean was
around 13 and, therefore, my answer is 8.66666.”

An experimenter.
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Explanations from experimental subjects

Chooses 42 with the following ex- planation: “Even though I know I
won’t win, I take the answer from the question of life, universe, and
the rest [see Douglas Adams, “The Hitchhiker’s Guide to the Galaxy”
(1995)] and use it for everything. Maybe I will also use it for this
quiz.”

No idea. Level-0?
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Experimental evidence

Does knowing this help us to predict the outcome of other games?
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Some thoughts

Level-k is the modal reasoning process

Relationship between level k and iterated dominance?
I Can be a bit difficult to disentangle here since they generate similar

predictions at the higher orders

Distribution of levels as types in a Bayesian game?
I cf. Camerer, Ho & Chong (2004) ‘cognitive hierarchy’
I Stated goal is to explain patterns of decision making across different

games
I Why are people pretty good at reaching equilibrium quickly without

much learning time in some games but pretty bad in others?

Jim Campbell (UC Berkeley) Games Summer 2021 56 / 140



Cognitive hierarchy

Matches the ‘iterated best reply II’ categorization from the beauty
contest classification

Hierarchy as follows:
I Step 0 players randomize
I Step k players best respond assuming that other players are distributed

over step 0 to k − 1

That is: every player assumes that they are at the highest level of
reasoning relative to everyone else

Frequency distribution f (k) of step k players assumed to be Poisson

Poisson is prob. distribution with mean and variance both equal to
the same number λ

λ = 1.61 is median estimated from 24 beauty contest data sets
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Poisson distribution with λ = 1.61

(Generated via
https://homepage.divms.uiowa.edu/ mbognar/applets/pois.html)
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The 11-20 money request game

Arad & Rubinstein (2012):

The ex post fitting of a distribution of level k types to experimental
results is not ideal.

Maybe someone using a completely different thought process is
spuriously categorized as a level-k reasoner.

Also tough to find games in which level-k is the ‘natural’ reasoning
process and in which a particular L0 strategy is obviously the ‘right’
assumption.

This paper is one of several recent papers to try to overcome these
issues.
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The 11-20 money request game

Players: two individuals, 1 and 2.

Moves: the individuals simultaneously choose a number of dollars
between 11 and 20 (inclusive).

Payoffs: each player receives the amount they chose, plus a bonus of
20 dollars if and only if she asks for exactly one dollar less than the
other player.

$20 is a ‘natural’ L0; it can be justified quite easily and ‘sounds good’.

Level-k best responses are very easy to come up with.

L1 is robust to quite varied L0 strategies.

Lk is quite robust to beliefs about distribution of other types.

No social aspect to payoffs.

No pure-strategy NE exists (check) and no dominated strategies exist.
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The 11-20 game: Nash and results

We can reject the hypothesis that subjects’ choices were Nash.

Choices consistent with L1, L2 and L3 cover almost three quarters of
the observations.

The best statistical fit is L0− L3 with noise (as opposed to Nash,
L0-L4, L0-L5).
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The 11-20 game: explanations

Subjects’ explanations for their choices reveal that:

Almost everyone in the 17-19 range used level-k reasoning.

No-one who chose in the 11-15 range used level-k reasoning.

Only one 16-chooser described using level-4 reasoning.

A handful of subjects iterated back around from 11 to 20 but, despite
this, ended up back within three iterations from 20.
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The 11-20 game: extensions

The authors use two further experiments as robustness checks against a
couple of potential competing interpretations of the data.

The first enhances the salience of the L0 action:
I Extra payoff condition: also get a $20 bonus if she asks for $20 and the

other player asks for $11.

I Makes $20 even more attractive than before.
I Results show that L0− L3 same as before, but of these many more are

at L1: recognize new appeal of $20 and so reason less deeply?
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The 11-20 game: extensions

The first extension reduces the cost of higher levels of reasoning:
I Change to payoffs: choose 20, get 20. Choose another number, get 17.

Bonus of 20 if choose one less than the other player.

I Undercutting doesn’t carry additional sacrifice of a dollar at higher
levels of reasoning.

I Again there is little evidence of orders of reasoning above L3, even with
the indirect cost of extra reasoning removed.
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Applying level-k
The level-k model has been used to explain some empirical puzzles

In particular it has been usefully applied to auctions and zero-sum
cheap talk games

We will look at its application to ‘magical’ coordination (adapted
from Crawford 2007)

And its application to hide and seek games (Crawford and Iriberri
2007 AER)

Another extremely important application is to auction theory (e.g.
Crawford and Iriberri 2007 Econometrica) but it is a bit beyond our
technical level here

I In short, level k does a good job at explaining in a unified way a couple
of famous disparate puzzles in auction theory: the winner’s curse in
common value auctions and overbidding in independent private value
auctions

I (Auctions, by the way, are a really important and useful application of
game theory—lots and lots of important real-world transactions are
auctions, and auction theory can be used as a framework to think
about non-auction institutions as well)
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Coordination with private preferences

Puzzle: experimental subjects are better at coordination than the
mixed-strategy NE result. Kahneman 1988: “To a psychologist, it looks
like magic.”

H D
H 0, 0 a, 1
D 1, a 0, 0

With a > 1.

Unique symmetric NE is mixed strategy: Pr(H) = a
1+a .

Thus expected coordination rate in equilibrium (i.e. how often the
off-diagonals are realized) is 2p(1− p) = 2a

(1+a)2
.

And the expected payoff to each player is thus a
1+a < 1.
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Levels of reasoning

H D
H 0, 0 a, 1
D 1, a 0, 0

Let L0 be random again: Pr(H) = Pr(D) = 1
2 .

We will let types be L1 through L4.

L1 chooses H, L2 chooses D, L3 chooses H, L4 chooses D.
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Type frequencies

We will assume no L0 types and that type frequencies are independent of
payoffs or player role.
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Equilibrium vs. level k

Since L1 and L3 are outcome equivalent, combine them and call their
proportion in the population v .

The level-k coordination rate is 2v(1− v).

This is maximized by v = 1
2 at the level 1

2 .

Compare to the rate in mixed-strategy NE: 2a
(1+a)2

, which does just as

well when a = 1 but converges to 0 as a→∞.

Coordination rates can be dramatically higher under this model of
predictable heterogeneity (population frequency) in orders of
reasoning for v near 1

2 .

Compare to Arad & Rubinstein... to Poisson...
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Doing better by thinking less?

The idea is that higher orders can think through the decision of lower
orders and best respond, benefiting both.

Players here are rational, yet nothing like equilibrium reasoning is
being used here.

Instead coordination is a predictable result of non-equilibrium
reasoning.
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Hide and seek

Hide and seek games are two player zero-sum games: one player wins by
matching the opponent and the other player wins by mismatching

Applications include roduct design and differentiation, military
strategy, election campaigning, and social signaling

Rubinstein, Tversky, and Heller (1997) is an example of a hide and
seek experiment; 4 locations with non-neutral labeling

For example: four ‘boxes’ labeled A-B-A-A

Zero sum games (like rock paper scissors from earlier) are clean
examples in which randomization is a smart strategy

The unique equilibrium is in mixed strategies: both players randomize
uniformly across locations

But seekers find the treasure 32% of the time
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Hide and seek experiments
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Rubinstein, Tversky, and Heller (1996)
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Level k and hide-and-seek

Crawford and Iriberri (2007 AER) propose that a calibrated level k model
can rationalize hide-and-seek behavior

This would mean that choices are not naive but are rather
sophisticated responses to a mental model of what types the other
players might be

They assign L0 probabilities that favors the supposedly ‘salient’
locations (most on the endpoints and next most on box B) and puts
low weight on the non-salient central A

Find 19% L1, 32% L2, 24% L3, 25% L4 explains RTH data best

We are in a philosophical quagmire here about whether non-salience
is itself salient...

So in that spirit Wolff (2016) elicits salience from experimental
subjects in hide-and-seek; finds the opposite of Crawford and Iriberri
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Wolff (2016)
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Level k, cognitive ability, emotional traits

David Gill and Victoria Prowse (2016): how does cognitive ability and
character correlate with decisions in level k / learning settings?

37 sessions at U of Arizona, 780 total subjects from Experimental
Science Lab subject pool (grad students in economics excluded)

Show up fee $5 and average earnings $20

Raven’s Progressive Matrices test of analytic intelligence (nonverbal,
select element to complete a visual pattern)

I Put in ‘high’ or ‘low’ ability group if test score in the top/bottom half
of the session

I No money incentive for Raven test (avoid income effects spillover to
beauty contest)

Followed by 10 round beauty contest in groups of three p = 0.7
1 Own-matched sessions: all 3 same ability
2 Cross-matched sessions: mixed ability
3 Known to subjects

Some sessions preceded by questionnaire about character skills
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Gill & Prowse (2016)
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Gill & Prowse (2016)
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Level k

Authors estimate structural model of level k reasoning that fits the
behavioral differences in the experimental data

Level 0: ‘follow the crowd’ and copy group behavior from previous
round

Rule learning: include types who switch up a level during the
experiment

Systematic positive relationship between cognitive ability and levels

Average level of high ability subjects responds positively to
opponents’ ability; not true for low ability subjects

More agreeable and emotionally stable subjects chose lower numbers
and had higher levels; effect less than cognitive ability

Effects of cognition and character persist when controlling for the
other
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Effects of cognition and character persist when controlling for the
other
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Some robustness checks from the paper

A couple of examples of other things analyzed:

Authors present evidence that the effect of being allocated to the ‘top
half’ versus ‘bottom half’ of Raven’s results didn’t itself affect
behavior

I To check this, can exploit that the variation in session composition
meant that some ‘bottom half’ subjects had higher scores than some
‘top half’ subjects from other sessions

Check to see if composition of cross-matched groups changes choices
I i.e. does it matter if you’re the only ‘top half’ person in a mixed group

or if there is another?
I Differences in earnings persist
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Poe’s riddle

Eliaz and Rubinstein (2011) study a repeated matching pennies game
motivated by Poe’s “The Purloined Letter”

Similar kind of idea to Crawford and Iriberri: use level k to explain the
deviations of experimental data from randomization

The game:

L R
T 0, 1 1, 0
B 1, 0 0, 1

Nash equilibrium is unique in mixed strategies; each player
randomizes half-half over their pure strategies and so each ‘wins’ with
probability 1

2

In an n-round repeated version, each player’s win rate ‘should’ be
distributed Binomial(n, 0.5)
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Eliaz & Rubinstein (2011)

Baseline treatment:
I Players move sequentially (2nd player does not observe 1st player’s

move)
I 1st player is labeled ‘misleader’ and 2nd player ‘guesser’
I Actions are labeled 0 and 1 so that the guesser wins when choosing the

same action as the misleader

Guessers won more points than the misleader in around 51% of pairs;
the misleader won more points in around 29% of pairs; 20% of pairs
ended in a draw

About 53% of rounds are won by the guesser—a seemingly small
edge, but one that is statistically significant and requires large
deviations from equilibrium strategies to generate

There is a tendency in the data for guessers to repeat their action
after success slightly more frequently than misleaders, which partly
accounts for the slight edge for guessers
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Eliaz & Rubinstein (2011)

The actual distribution vs. the binomial prediction
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Eliaz & Rubinstein (2011)

Some variants to explore the mechanism:
1 Drop the guesser-misleader frame; players labeled ‘odd’ (P1) and

‘even’ (P2) and get a point depending on whether the sum of the
numbers chosen is odd or even

I Even player won 54% of rounds: 2nd mover and having to match the
opponent’s action seem enough to generate the same result

2 Check if effect is a second-mover advantage: have P1 guess P2’s
future choice, and repeat variant 1 with P1 the ‘even’ player

I Misleader/odd-player does not get a significant advantage when
moving second

3 Drop all non-neutral labels: P1 chooses ‘a’ or ‘i’; P2 chooses ‘s’ or ‘t’.
P1 wins with ‘at’ or ‘is’ and P2 wins with ‘is’ or ‘at’

I Cannot reject hypothesis that each player is equally likely to win:
timing-without-observability does not seem to be enough to generate
the second-mover advantage
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Backward induction

A core concept in game theory is the idea of backward induction

What do I think you will do tomorrow?

Given that, what should I do today?

It is another classic case in which the predictions of mutual rationality
do not match the evidence very well

... as we go along: do you feel like the demands of mutual rationality
in a one-shot game is like or unlike the demands of mutual rationality
in backward induction
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Ferocious pirates

Five pirates, A, B, C , D, E . 100 gold pieces are up for grabs.

Pirate A proposes a division of the gold among the five groups: the
division must give between 0 and 100 to each pirate, using whole
pieces only, and must sum to 100.

All pirates (including the proposer) vote on the proposal. If a majority
of pirates vote in favour, the proposal passes, the division is
implemented, and the game ends. Ties are broken in favour of the
proposer. If a majority of groups vote against, the motion fails and
pirate A walks the plank.

If A’s proposal fails, B proposes a division of the gold among the
remaining four pirates, which again must sum to 100. The voting
stage is repeated.

And so on until a proposal is accepted or there are no more pirates.

What should pirate A propose and why?
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Predation

Consider the following game:

1 Players: two firms, entrant E and incumbent I .

2 Moves: E chooses whether to ‘enter’ or ‘stay out’, then I chooses
whether to ‘fight’ or ‘accommodate’.

3 Information: the firms know everything about the game and payoffs,
and the incumbent observes the entrant’s decision before making its
own choice.

4 Payoffs: specified according to the following matrix representation:

Fight Accommodate
Stay out 0, 2 0, 2

Enter −3,−1 2, 1

Where are the Nash equilibria in pure strategies?
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Predation

Fight Accommodate
Stay out 0, 2 0, 2

Enter −3,−1 2, 1

There are Nash equilibria at the strategy pairs (out, fight) and
(enter , accommodate).

But since the moves are sequential, the first of
these relies on a non-credible threat. Once the entrant has entered, the
incumbent does better by accommodating.

The Nash equilibrium solution concept admits such insensible
predictions in sequential games.

Can we find a solution concept that is ‘better’ in these settings?
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Extensive form

First let’s look at a natural way to represent sequential-move games.

The extensive form of a game uses a game tree to represent the
order of the game.

Like the matrix representation of normal form, it captures the players,
their possible moves, and the payoffs to each strategy profile.

But it also captures who moves when and what they will have already
seen before they are called on to make some move.
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Extensive form of the predation game
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Extensive form terminology

Some terminology for extensive form:

A decision node is a point at which a player is called upon to move.

The initial decision node is the first such point.

A branch represents a choice from a decision node.

A terminal node is a point at which there are no further moves; the
game ends with payoffs to players specified at the terminal node.

An information set links decision nodes for player i such that when
play reaches one decision node in the information set, player i does
not not know which decision node in the information set has been
reached.

Today we are looking only at games of perfect information, so that we
don’t have to worry about information sets: each information set contains
only one decision node.
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Sequential rationality

A player’s strategy is sequentially rational if it is optimal at every point
in the game tree.

Given that the game has arrived at some point in the game tree,
sequentially rational strategies are those that prescribe optimal play from
that point on, given opponents’ strategies.

For the incumbent to play ‘fight’ at the point after the incumbent has
chosen to enter is not sequentially rational.

Sequential rationality rules out non-credible threats.
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Backward induction

A procedure that repeatedly applies sequential rationality is backward
induction.

Starting at the bottom of the game tree, we determine optimal
actions at the final decision nodes.

Non-optimal actions are ruled out if we require that strategies are
sequentially rational, so we can ‘prune’ them from the game tree.

We repeat this logic back up the layers of the tree.

In the predation game there is only one layer to unpick in this way.
Consider the more complicated game on the next slide.
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Backward induction
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Backward induction

At the nodes immediately before the terminal nodes, we find the
optimal actions for player 3 given that we have reached each such
node.

After pruning non-optimal actions, we move back to the preceding
layer and find the optimal action for player 2 given that we have
reached the node at which she moves, given player 3’s optimal
actions.

After pruning player 2’s non-optimal actions, we move back again to
the preceding layer and find the optimal action for player 1...

The unique strategy profile satisfying sequential rationality features
(R, a, r) on the equilibrium path. Note that there are certainly other Nash
equilibria in this game!
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Backward induction

But remember: a strategy is a complete contingent plan of action. The
unique strategy profile satisfying sequential rationality has

σ1 = R (17)

σ2 = a if player 1 plays R (18)

σ3 =


r if player 1 plays L

r if player 1 plays R and player 2 plays a

l if player 1 plays R and player 2 plays b

(19)

It is very important to remember to completely specify strategies!

Jim Campbell (UC Berkeley) Games Summer 2021 96 / 140



Backward induction

Applying sequential rationality can thus rule out ‘unreasonable’ Nash
equilibria in sequential games.

Every finite game of perfect information has a pure strategy Nash
equilibrium that can be derived through backward induction. If no player
has the same payoffs at any two terminal nodes, there is a unique Nash
equilibrium that can be derived through backward induction.

For finite games of perfect information, the set of Nash equilibria that
survive backward induction coincide with the set of Subgame Perfect
Nash Equilibria (SPNE).
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Subgames

A subgame of an extensive form game is a subset of the game which

1 begins at an information set containing a single decision node,
contains all the decision nodes that are its successors, and contains
only these nodes, and

2 if it includes some node x , also includes all nodes in the information
set containing node x .

Since we are still looking only at perfect information games, all
information sets have only a single decision node. Then the part of the
game from any one decision node to the end of the tree is a subgame.
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Subgame Perfect Nash Equilibrium

Our next solution concept is subgame perfect Nash equilibrium
(SPNE).

A strategy profile constitutes a SPNE of an extensive form game G if it
induces a Nash equilibrium in every subgame of G .

The backward induction procedure we identified earlier will find SPNE
in finite games of perfect information.

As we move backward through the tree, we are implicitly identifying
subgames, and when we prune the tree we are eliminating non-NE
play in those subgames.

Next section we will analyze SPNE in games of imperfect information.
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Interpreting SPNE

In our perfect information games, is SPNE a ‘good’ solution concept?

Are players able to perform backward induction? Chess is a
sequential-move, perfect information game...

Does it yield plausible predictions?
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Centipede

There are two players, 1 and 2. A referee puts down $2 on the table.
Player 1 can either ‘take’ and pocket the $2 or ‘split’ and give each player
$1. If she plays ‘take’, the game ends. If not, the referee puts down
another $2. Player 2 can either take or split this new $2. If he takes, the
game ends. If not, the referee puts down another $2 and player 1 chooses
again. This continues until either someone plays ‘take’ or the referee has
put down $20, at which point the referee runs out of money.

i. Should player 1 play ‘take’ or ‘split’?

ii. Can you suggest a real-world situation that could be modeled
by this game?

iii. Find the unique outcome that survives backward induction in
this game.
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Backward induction in Centipede

At the final decision node (after ‘continue’ all the way but before one
more ‘continue’ gives both $10) player 2 gets $11 by stopping and
$10 by continuing

Thus it isn’t sequentially rational for player 2 to continue

And so at the previous turn player 1 gets $9 by stopping and $8 by
continuing...

The unique backward induction ‘solution’ has both players saying
‘stop’ whenever it is their turn

But this is terrible for the players... they could have had $10 each!
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Backward induction in Centipede
Is this a good predictor of play?

If player 1 plays ‘stop’ in the very first round, it must be because she
expects player 2 to play stop

What if player 1 plays ‘continue’?

If player 2 expected ‘stop’, how should he interpret this thing that
SPNE predicted would never happen?

Perhaps player 2 believes that this shows that there’s a chance that
player 1 is crazy or stupid and will always say ‘continue’; then perhaps
he should continue too...

To be an SPNE, a strategy profile must prescribe SPNE in any
subgame, even ones whose arrival has already contradicted SPNE!

Some variations on the centipede:

What if the referee never runs out of money?

What if the players don’t know how much money the referee has?

What if some players are ‘crazy’ and always play ‘continue’?
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Centipede

Centipede is a multistage game in which players alternately choose whether
to ‘take’ the pie, ending the game, or ‘pass’, increasing the size of the pie

First studied in Rosenthal (1981) and named ‘centipede’ by Ken
Binmore because its extensive form looks like a bug with many legs

These are multistage trust games that model situations in which gains
grow over time but players face constant temptation to end the
relationship by grabbing more

Different than a repeated prisoners’ dilemma because of the
alternating nature of the choices and the increasing pie—there is a
similar flavor but centipede vs PD highlights some of the key
distinctions between sequential and repeated games
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Lab evidence
McKelvey and Pelfrey (1992) studied the centipede experimentally
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Number of experiments ending at each node

Only 1 out of 138 participants chose ‘take’ every chance they got (i.e.
the backward induction strategy)

9 out of 138 always chose ‘pass’ at every possibility

If 5% were altruistic in the sense of always choosing pass, the
experimental data can be well explained
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Lab evidence

Fey, McKelvey, and Pelfrey (1996) study a constant-sum centipede, since
fairness considerations could have been at work in the original experiments
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Lab evidence

In the constant-sum centipede, results looked quite different

45 of 176 subjects chose ‘take’ at every opportunity

2 chose ‘pass’ at every opportunity, but none were in the first-mover
role

The altruism model proposed in the previous paper doesn’t do well
here to explain the data
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Making mistakes or being different

There are a couple of theoretical frameworks that are consistent with the
centipede evidence

The main idea is that if there is a sufficient chance that the other
player will pass, your best response may be to pass too

As the length of the centipede increases, the chance that the other
player will pass doesn’t have to be so large in order for you to want to
pass

That is: the longer the game, the bigger the potential reward if the
other player keeps passing

Two possible reasons why:
1 Mistakes: the player tries to play ‘rationally’ but just messes up

sometimes
2 Types: some players might have a different goal in mind than

maximizing their own cash payoff
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‘Lab’ evidence with sophisticated players

Two papers that studied the centipede with high-level chess players are
Palacios-Huerta and Volij (2009) and Levitt, List, and Sadoff (2011); we
will look at these in turn

The idea is to find people who are experts in backward induction

... and known to be experts: we need common knowledge of
rationality for backward induction to be a valid model (Aumann 1995)

Goal: vary ‘distance’ from common knowledge of rationality to help
to distinguish this explanation for failure of SPNE in the centipede
from social preferences

Field experiment: chess players at tournaments matched up for one
play of the centipede game; comparison group of college students
playing a lab version

Lab experiment: students and chess players matched up for ten
rounds against different opponents each time; order of play of the two
types of subjects varied across treatments
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Palacios-Huerta and Volij (2009) field experiment
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Palacios-Huerta and Volij (2009) field experiment
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Palacios-Huerta and Volij (2009) lab experiment
Treatment 1: student vs. student; treatment 2: student vs. chess player
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Palacios-Huerta and Volij (2009) lab experiment
Treatment 3: chess player vs. student; treatment 4: chess player vs. chess
player
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Levitt, List, and Sadoff (2011)

Again recruited subjects from chess tournaments, focusing on highly
ranked players

Two conference rooms, subjects in different rooms; didn’t know who
they were paired with

Each pair played one centipede and two versions of the race to 100 in
a random order

Designed to compare the centipede to the ‘race to 100 game’ which is
a constant sum winner-take-all game with tough backward induction
logic

Decisions communicated by instant message on
experimenter-controlled computers

Players recorded decisions of themselves and their opponent along the
way; correctness confirmed by the experimenter
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The race to 100 game

Two players

Alternate choosing numbers in a given range

This paper: ranges 1-10 and 1-9 (to vary the difficulty of the
backward induction steps)

Running total is kept

Winner is the one who chooses a number that makes the total add up
to exactly 100

Helpful because optimal strategy is robust to all but the most extreme
assumptions on players’ preferences

Requires 10 steps of backward induction to ‘solve’
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Levitt, List, and Sadoff (2011) centipede
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Levitt, List, and Sadoff (2011) race to 100

Notice the difference between the ‘easier’ and more difficult versions
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Levitt, List, and Sadoff (2011) comparison
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The Chainstore Paradox

We can also apply SPNE to repetitions of games.

Consider a game that consists of the Predation game from earlier
repeated 10 times.

For example, a chainstore is trying to deter entry by separate local
competitors into 10 markets where it has outlets.

The unique SPNE in Predation was for the entrant to enter and the
incumbent to accommodate.

But perhaps with 10 markets the chainstore will fight the first entrant
to try to deter the other 9 from trying?

This is the famous Chainstore Paradox (Selten 1978).
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The Chainstore Paradox

Consider the 10th market. By backward induction, the last game is
identical to the one-shot version.

The unique SPNE in the subgame consisting of the last repetition is
at (enter , accommodate).

In the 9th repetition, the incumbent has no incentive to fight entry to
try to deter the 10th entrant, since the 10th entrant will be
accommodated anyway.

We can apply this logic right back to the first market.

The unique SPNE features (enter , accommodate) in every market.
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Repeated games

This equally applies to repeated simultaneous-move games.

Consider a repeated Prisoner’s Dilemma.

C D
C −1,−1 −10, 0
D 0,−10 −5,−5

The unique Nash equilibrium has both players choose D.

Notice that strategies can be conditional on history and so can
become very complicated. To see why, imagine what the extensive
form looks like...

The five-round repeated Prisoner’s Dilemma has a strategy set for
each player with over two billion strategies!
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Finitely repeated games

What if the game is repeated T times?

As in the chainstore game, we can apply backward induction and
SPNE: each repetition is the beginning of a subgame that consists of
all remaining repetitions.

Consider the last period: players have no incentive to cooperate since
there is no tomorrow.

Thus in SPNE (D,D) must be played in the last period.

In the second-to-last period, players have no incentive to cooperate
since they will not cooperate tomorrow...

In both cases, this is not perhaps what we’d expect to observe with real
players. Why does SPNE not seem entirely satisfying?
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The Flood-Dresher experiment

Flood (1952) is an early reported repeated prisoner’s dilemma

100 rounds (known in advance); payoffs asymmetric (relabeled here
for clarity)

L R
U −1, 2 0.5, 1
D 0, 0.5 1,−1

It is notable because the players were two friends, an economist and a
mathematician, and they were asked to keep a running log of their
personal comments on what was happening

Players were familiar with zero-sum game theory but not with the full
extent of what were then the new findings from Nash

Payoffs concocted deliberately to include ‘split-the-difference’ solution
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Flood-Dresher
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Start of comments (table from De Herdt 2003)
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Response from Nash
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Response from Nash
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Flood-Dresher

Interesting since there is not yet a totally ingrained received wisdom

Game theory seems at that point ‘up for grabs’ relative to how the
Nash program came to dominate

Responses from Nash include several chapters worth of material for a
game theory textbook...

Eliciting the commentary makes this a really fun artifact—but is the
game with prompt for introspective commentary the same game?
How can we elicit comments in our experiments?
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SPNE in finitely repeated games

If the repeated game has more than one Nash equilibrium, SPNE is
less restrictive.

This is because more than one payoff can be realized in the final
subgame...

Strategies can then promise rewards and punishments without
violating that each subgame must feature a Nash equilibrium.

What if a game is repeated indefinitely?

There is no ‘end’ from which to apply backward induction and pin
down SPNE.
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Infinitely repeated Prisoner’s Dilemma
Consider the infinitely repeated Prisoner’s Dilemma.

C D
C 1, 1 −1, 3
D 3,−1 0, 0

What if player 2 plays a strategy X that says “Play C unless my opponent
has ever played D, then play D forever” (“Grim” strategy)? Consider some
period before which both players have always played C . Player 1’s payoffs
to also playing X and to playing D forever:

π1(X ) = 1 + 1 + 1 + 1 + ... (20)

π2(D) = 3 + 0 + 0 + 0 + ... (21)

For some discount rate δ, X dominates D if

1

1− δ
> 3 (22)

δ >
2

3
. (23)
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Collusion

We can apply this logic to analyze collusion: consider an infinitely
repeated version of the Bertrand game we saw last time.

The unique one-shot Nash equilibrium featured both firms pricing at
cost and making zero profits.

Can there be an equilibrium in which both set some high price p∗ and
earn positive profits π∗ > 0?
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Collusion

Say firm i is playing a strategy that says “set a high price, unless my
opponent has ever undercut, then play the Bertrand price forever.”

If firm j plays the same strategy it earns π∗ every period, forever.

If firm j undercuts, it earns a higher profit today (πH) and at most
zero for each subsequent period.

The ‘collude’ strategy beats undercutting if:

π∗

1− δ
> πH (24)

δ > 1− π∗

πH
(25)

A sufficiently patient firm prefers to collude than undercut. Note that this
‘collusion’ requires no talking!

We can also interpret δ as the probability that the game will end
today...
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Punishment and enforcement
Variations on the same framework can be applied to community
enforcement: the idea that our friends have our backs

e.g. repeated interaction between a business and a population of
potential customers

Temptation to rip off the customer, but long term gains from playing
nice

Threat of lost business from the customer and her friends (Ali and
Miller 2015)

If the firm cares enough about the future, this can enforce good
behavior (Kandori 1992)

But fly-by-night firms and snake oil salesmen may strike...

One of my papers is on how the availability of social network data
affects the incentives to rip off customers

What are the costs and benefits of swindling a consumer? It depends
on where they are positioned in the network

Applying standard repeated game concepts of reputation and trigger
strategies to the networked model
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The Folk Theorem

These ideas in infinitely repeated games are captured in the Folk
Theorem. For two player games:

For any feasible pair of individually rational payoffs (π1, π2)� (π1, π2),
there exists a δ such that, for all δ > δ, (π1, π2) are the average payoffs
arising in an SPNE.

Any average payoff bigger than what I can guarantee alone can be
supported in SPNE for sufficiently patient players.

Intuitively: the more patient the player, the harder punishment bites,
and so the smaller is the payoff in excess of the punishment payoff
that the threat of punishment can sustain.

This also implies that punishment strategies need not be so brutal as
the grim strategy above.
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The shadow of the future

Dal Bó (2005) studies an ‘infinitely repeated’ prisoner’s dilemma in the lab

Random continuation rule stands in for discounting
I In the ‘infinite’ treatments, δ = 0, 12 ,

3
4 is a commonly known

probability that the game will continue after each round

Finite treatments with the same expected length as each of the
‘infinite’ treatments admits a clean comparison: no ‘length of game’
effect

Two different payoff matrices used; which strategies are equilibrium
strategies for δ = 1

2 is different in the two games

Subjects quite good at understanding the expected length of ‘infinite’
games
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The effect of continuation probability
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Cooperation in finite time

Consider again the finitely repeated Prisoner’s Dilemma, played between 2
players T + 1 times, from t = 0 to t = T . Payoffs are the sum of the
stage payoffs.

C D
C 1, 1 −1, 3
D 3,−1 0, 0

We know that the unique SPNE strategy profile is (D,D) forever. This is
the chain store result.
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Cooperation in finite time

C D
C 1, 1 −1, 3
D 3,−1 0, 0

What if player 1 believes that there is some probability α that 2 will not
play this SPNE strategy but instead will play the grim profile?

Player 1 considers two options: “play SPNE” (A) or “play Grim until
the last period, then defect” (B).

πA = α[3 + 0.T ]︸ ︷︷ ︸
meet grim player

+ (1− α)[0.(T + 1)]︸ ︷︷ ︸
meet SPNE player

(26)

πB = α[1.(T ) + 3]︸ ︷︷ ︸
meet grim player

+ (1− α)[−1 + 0.T ]︸ ︷︷ ︸
meet SPNE player

(27)
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Cooperation in finite time

The payoff to B beats the payoff to A if

α[1.(T ) + 3] + (1− α)[−1 + 0.T ] > α[3 + 0.T ] + (1− α)[0.(T + 1)]
(28)

(T + 1)α > 1 (29)

If the game goes on sufficiently long, or there is a sufficiently high
chance of meeting the ‘grim’ player, the expected payoff to trying the
‘play nice then punish’ strategy is higher than the expected payoff to
always playing SPNE

Willing to try being nice in the hope of meeting a nice opponent

Shades of level k?
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