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Risk

What does it mean to choose the right thing when you don’t even know
what the consequences will be? The world is a risky place and so
economics needs to understand what kinds of decisions people make before
the dice are rolled.

In this section we will discuss the history and mechanics of the canonical
model of Expected Utility Theory, see where experiments have revealed its
weak points, and what we can do to shore it up or replace it entirely. We
will learn how to measure someone’s attitude towards risk and why it
matters both in economics experiments and the economy.

Jim Campbell (UC Berkeley) Risk Summer 2021 2 / 105



Risk

In this section:

1 Expected Utility Theory

2 The Allais Paradox and the Ellsberg Paradox

3 Risk aversion and measuring riskiness

4 Prospect Theory

5 Loss aversion

6 Information aversion

7 Reference dependence

8 Subjective Expected Utility

9 Rank Dependent Utility

10 Maxmin Expected Utility
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The St. Petersburg Paradox

You have the chance to play a game. You will pay some amount of money
to play, and you’ll win some money based on how many tosses of a coin
will be needed before it first turns up heads. If the coin first turns up
heads on the nth toss, you receive $2n. That is, $2 if it comes up on the
first throw, $4 if on the second, $8 if on the third, and so on.

Question

How much would you pay to play this game?

Question

What is the expected value of the prize?
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The St. Petersburg Paradox

Expected value of your prize:

E (prize) =
1

2
2 +

1

4
4 +

1

8
8 + ... (1)

= 1 + 1 + 1... (2)

=∞ (3)

Question again

Does this change your mind about how much you would pay to play?

What’s going on here?
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Choice under uncertainty

Goal: a model of the choice of an individual faced with actions whose
consequences are uncertain.

Why: to plug in to bigger models of the various real-world settings
which involve uncertainty. Examples?

Canonical model we’ll look at first is Expected Utility.

Today we will learn what Expected Utility theory is and challenge its
robustness. We’ll also look at the concept of risk aversion. Next time
we’ll look at evidence on individual choice behavior and look at
alternative modeling approaches that attempt to account for such
evidence.
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Lotteries

Decision-maker (DM) faces a choice among risky alternatives.

C: set of all possible outcomes. The number of outcomes in C is
finite, and they are indexed 1, ..., n.

Simple lottery: L = (p1, ..., pn), pn ≥ 0 for all n,
∑

n pn = 1.

pn: probability of outcome n occurring.

Compound lottery: allows outcomes of a lottery to be simple
lotteries.

Reduced lottery: for a given compound lottery, the simple lottery
that generates the same ultimate distribution over outcomes.
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Preferences over lotteries

Consequentialism: only the reduced lottery over final outcomes
matters to the DM

L: set of all simple lotteries over outcomes C.

Assume DM has a rational preference relation % on L (complete and
transitive).

Keep in mind flexible definition of objects in C!
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From preferences over lotteries to EU

Continuity (suppressing technical definition): small changes in
probabilities don’t alter the nature of the DM’s ordering between two
lotteries.

This akin to ruling out lexicographic preferences in traditional theory of
choice under certainty. Guarantees us the existence of a utility function
representing % such that L1 % L2 if and only if U(L1) > U(L2).

Independence: % over L satisfies the independence axiom if for all
L1, L2, L3 and p ∈ (0, 1):

L1 % L2 if and only if pL1 + (1− p)L3 % pL2 + (1− p)L3

Preference over mixture of each of two lotteries with some third lottery
follows preferences over the two lotteries themselves - it’s independent of
what third lottery we choose.
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The expected utility form
We’re interested in a utility function U : L → R: assigns utility numbers
to lotteries where more preferred lotteries have higher utility numbers. A
particularly convenient example would be the expected utility form:

U : L → R has an expected utility form if there is an assignment of
numbers to the N outcomes such that for every simple lottery L ∈ L we
have

U(L) = u1p1 + ...+ uNpN (4)

U with expected utility form is a von Neumann-Morgenstern expected
utility function.

Utility of a lottery is the expected value of the utility of the outcomes

Linear function of probabilities

EU property is cardinal property: magnitudes of utilities mean
something here

Jim Campbell (UC Berkeley) Risk Summer 2021 10 / 105



The expected utility form
We’re interested in a utility function U : L → R: assigns utility numbers
to lotteries where more preferred lotteries have higher utility numbers. A
particularly convenient example would be the expected utility form:

U : L → R has an expected utility form if there is an assignment of
numbers to the N outcomes such that for every simple lottery L ∈ L we
have

U(L) = u1p1 + ...+ uNpN (4)

U with expected utility form is a von Neumann-Morgenstern expected
utility function.

Utility of a lottery is the expected value of the utility of the outcomes

Linear function of probabilities

EU property is cardinal property: magnitudes of utilities mean
something here

Jim Campbell (UC Berkeley) Risk Summer 2021 10 / 105



The Expected Utility Theorem

Suppose that rational preference relation % satisfies the continuity and
independence axioms. Then % admits a utility representation of expected
utility form, so that it is possible to assign a number un to each outcome
n = 1, ...,N such that L % L′ if and only if

∑N
n=1 unpn ≥

∑N
n=1 unp

′
n.

Indifference curves that represent this graphically are straight, parallel
lines

Is EU theory a ‘good’ model of choice under uncertainty? Does it
make concrete predictions?
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Working with EU

(Varian 1992) An individual has a vNM EU function over in which his
utility numbers attached to outcomes defined by ‘final wealth (w)’ is given
by u(w) =

√
w . He starts with $4 and holds a lottery ticket that pays $12

with probability 1
2 and pays $0 with probability 1

2 .

Questions

What is his expected utility? What is the lowest price at which he’d sell
the lottery ticket?

EU =
1

2
u(4 + 12) +

1

2
u(4 + 0) = 3 (5)

This is the same utility as if he had $9 for sure. He’d sell the ticket for at
least $5. This example predicts our discussion of monetary lotteries and
risk aversion. First we will look at some famous challenges to the model of
choice that uses the EU form.
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A thought experiment

Choose one of the following:

L1: 100% chance of receiving $1m.

L′1: 10% chance of receiving $5m, 89% chance of receiving
$1m, 1% chance of receiving nothing.
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A thought experiment

Choose one of the following:

L2: 11% chance of receiving $1m, 89% chance of receiving
nothing.

L′2: 10% chance of receiving $5m, 90% chance of receiving
nothing.
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The Allais paradox

If L1 � L′1 by an EU-maximizing DM:

u(1) > 0.1u(5) + 0.89u(1) + 0.01u(0) (6)

⇒ 0.11u(1) > 0.1u(5) + 0.01u(0) (7)

⇒ 0.11u(1) + 0.89u(0) > 0.1u(5) + 0.9u(0) (8)

But if L′2 � L2:

0.1u(5) + 0.9u(0) > 0.11u(1) + 0.89u(0) (9)

An EU-maximizing DM cannot prefer L1 to L′1 and L′2 to L2?
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The Allais paradox

Another example from Kahneman and Tversky (1979)

61% of subjects chose chose the modal response in both questions (i.e.
true within-subject Allais violations)
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Reactions to the Allais paradox

This is due to Allais (1953) and is an early example of an ‘empirical’
challenge to the validity of the EU model of choice under uncertainty.
Motivator for regret theory.

Some thoughts:

Not all people in experiments display these preferences; one size does
not seem to fit all.

Did we have the right idea of what the ‘final consequences’ or
‘outcomes’ were? Semantics of journey vs. destination.

Learning from one’s ‘mistakes’; e.g. Green (1987) Dutch books
argument.

Is the contradiction too stylized to generalize?

Practical response 1: Relax independence axiom (procedural).

Practical response 2: Define preferences over more than just ‘final
outcomes’ (semantics).
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Another thought experiment

An urn contains 300 balls. 100 are red, and 200 are either blue or green.
One ball will be drawn from the urn at random.
Choose one of the following:

L1: Receive $1,000 if the ball is red, else nothing.

L′1: Receive $1,000 if the ball is blue, else nothing.
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Another thought experiment

An urn contains 300 balls. 100 are red, and 200 are either blue or green.
One ball will be drawn from the urn at random.
Choose one of the following:

L2: Receive $1,000 if the ball is not red, else nothing.

L′2: Receive $1,000 if the ball is not blue, else nothing.
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The Ellsberg paradox

Let u(0) = 0 for convenience. If L1 � L′1 by an EU-maximizing DM:

Pr(red)u(1000) > Pr(blue)u(1000) (10)

⇒ Pr(red) > Pr(blue) (11)

But if L′2 � L2:

Pr(¬red)u(1000) > Pr(¬blue)u(1000) (12)

⇒ Pr(¬red) > Pr(¬blue) (13)

Are the respondents thinking about these probabilities? What are they
thinking about?
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Reactions to the Ellsberg paradox

This is due to Ellsberg (1961). It is obviously similar in spirit, but where
Allais pushes us to consider how the DM values objects, Ellsberg invites us
to consider how the DM perceives probabilities.

This is a motivation of the study of ambiguity aversion: “people
prefer to act on events they feel well-informed about” (Ghirardato &
Le Breton 2000)

There is a connection with Knight’s (1921) distinction between risk
and uncertainty; it seems to matter whether we are considering
concrete probabilities

To incorporate ambiguity aversion, Schmeidler (1989) develops an EU
representation with non-additive decision weights
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Machina’s paradox

Three outcomes: “trip to Venice”, “watch an excellent movie about
Venice”, “stay home”.

Say you prefer them in that order.

Choose one of the following:

A: “trip” with probability 99.9%, “movie” with probability
0.1%

B: “trip” with probability 99.9%, “stay home” with
probability 0.1%

Is it crazy to prefer B to A?

Disappointment

Preferences contingent on an unrealized outcome: failure of
independence axiom?
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Framing

Perhaps most problematic of all is due to Tversky and Kahneman (1986):
An outbreak of a disease will cause 600 deaths. Two mutually exclusive
responses are available.

Choice 1

A. 200 people will be saved
B. With probability 1

3 , 600 people will be saved; with probability 2
3 , 0

people will be saved.

Choice 2

C. 400 people will die.
D. With probability 1

3 , 0 people will die; with probability 2
3 , 600 people will

die.

72% chose A over B; from a different set of subjects 78% chose D over C.
The choices are identical!
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Framing

Again we see a situation where reference points matter, but this time they
are exclusively primed

The standard interpretation is that the DM is prompted to think in
terms of lives lost vs. lives saved

This is another indication that losses and gains might be processed in
different ways

Jim Campbell (UC Berkeley) Risk Summer 2021 24 / 105



Money lotteries

Back to the St. Petersburg paradox. The game pays an infinite
amount of money! Why not pay very large amounts to play?

Daniel Bernoulli (1738) argued in effect that postulating that people
evaluate this game by thinking about expected money outcomes was
not such a good model as one in which people evaluated the ‘utility’
of money outcomes. (see
http://cerebro.xu.edu/math/Sources/NBernoulli/correspondence petersburg game.pdf
for a neat archive of preceding correspondence between Daniel, his
brother Nicolas and others)

Bernoulli argued for the plausibility of what we now call diminishing
marginal utility of money.
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Risk aversion

The EU theorem can be fit to outcomes that are defined by a continuous
variable. Take lottery space L to be the set of all distribution functions
over nonnegative amounts of money. A vNM utility function U(·) now
looks like this:

U(F ) =

∫
u(x)dF (x) (14)

It’s the mathematical expectation of the values of u(x), which replaces the
values (u1, ..., uN) from before.

u(·) is the Bernoulli utility function

Notice that the EU axioms do not restrict it in any way, so the onus
is on the modeler (i.e. you) to specify interesting and relevant aspects
of choice behavior

For example: let’s assume u(·) is increasing and continuous; the St.
Petersburg paradox suggests also boundedness
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Risk aversion

A DM exhibits risk aversion if for any lottery F (·) the degenerate
lottery yielding

∫
xdF (x) for sure is at least as good as F (·).

Equivalent: u(·) is concave.

Equivalent: the certainty equivalent - that amount of money that
leaves the DM indifferent between the money and the gamble - is
smaller than the gamble’s expected money outcome.

Equivalent: the probability premium - the excess in winning
probability over 50-50 odds that would make an individual indifferent
between an outcome x an a gamble over x + ε, x − ε - is positive for
all x , ε.

We can illustrate these all geometrically by plotting the Bernoulli function.

Jim Campbell (UC Berkeley) Risk Summer 2021 27 / 105



Risk aversion

A DM exhibits risk aversion if for any lottery F (·) the degenerate
lottery yielding

∫
xdF (x) for sure is at least as good as F (·).

Equivalent: u(·) is concave.

Equivalent: the certainty equivalent - that amount of money that
leaves the DM indifferent between the money and the gamble - is
smaller than the gamble’s expected money outcome.

Equivalent: the probability premium - the excess in winning
probability over 50-50 odds that would make an individual indifferent
between an outcome x an a gamble over x + ε, x − ε - is positive for
all x , ε.

We can illustrate these all geometrically by plotting the Bernoulli function.

Jim Campbell (UC Berkeley) Risk Summer 2021 27 / 105



Risk aversion

A DM exhibits risk aversion if for any lottery F (·) the degenerate
lottery yielding

∫
xdF (x) for sure is at least as good as F (·).

Equivalent: u(·) is concave.

Equivalent: the certainty equivalent - that amount of money that
leaves the DM indifferent between the money and the gamble - is
smaller than the gamble’s expected money outcome.

Equivalent: the probability premium - the excess in winning
probability over 50-50 odds that would make an individual indifferent
between an outcome x an a gamble over x + ε, x − ε - is positive for
all x , ε.

We can illustrate these all geometrically by plotting the Bernoulli function.

Jim Campbell (UC Berkeley) Risk Summer 2021 27 / 105



Risk aversion

A DM exhibits risk aversion if for any lottery F (·) the degenerate
lottery yielding

∫
xdF (x) for sure is at least as good as F (·).

Equivalent: u(·) is concave.

Equivalent: the certainty equivalent - that amount of money that
leaves the DM indifferent between the money and the gamble - is
smaller than the gamble’s expected money outcome.

Equivalent: the probability premium - the excess in winning
probability over 50-50 odds that would make an individual indifferent
between an outcome x an a gamble over x + ε, x − ε - is positive for
all x , ε.

We can illustrate these all geometrically by plotting the Bernoulli function.

Jim Campbell (UC Berkeley) Risk Summer 2021 27 / 105



Risk aversion

A DM exhibits risk aversion if for any lottery F (·) the degenerate
lottery yielding

∫
xdF (x) for sure is at least as good as F (·).

Equivalent: u(·) is concave.

Equivalent: the certainty equivalent - that amount of money that
leaves the DM indifferent between the money and the gamble - is
smaller than the gamble’s expected money outcome.

Equivalent: the probability premium - the excess in winning
probability over 50-50 odds that would make an individual indifferent
between an outcome x an a gamble over x + ε, x − ε - is positive for
all x , ε.

We can illustrate these all geometrically by plotting the Bernoulli function.

Jim Campbell (UC Berkeley) Risk Summer 2021 27 / 105



Risk aversion

Figure: Bernoulli function for a risk averse DM
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Risk aversion

Figure: Two amounts, high and low, and the DM’s utility from each
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Risk aversion

Figure: DM prefers to get the expected value of a gamble for sure rather than the
gamble
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Risk aversion

Figure: Amount of curvature captures DM’s risk tolerance
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Risk aversion

What about the degree of risk aversion?

Absolute risk aversion

The Arrow-Pratt coefficient of absolute risk aversion at x is
rA(x) = −u′′(x)

u′(x) .

This is a measure of the curvature of u(·). If it’s decreasing in x an
individual will choose to take more risk at higher wealth levels.

Jim Campbell (UC Berkeley) Risk Summer 2021 32 / 105



Risk aversion

Absolute risk aversion evaluates attitudes toward gambles over absolute
gains and losses. For gambles over percentage gains and losses:

Relative risk aversion

The coefficient of relative risk aversion at x is rR(x) = − xu′′(x)
u′(x) .

Nonincreasing relative risk aversion means that an individual becomes less
risk averse with regard to gambles that are proportional to his wealth as
his wealth increases.

Aumann & Serrano (2008): risk aversion captures how averse an
individual is to risk, but not how risky the gamble is; like subjective
time perception (“this movie was too long”) without an objective
measure of time (“3 hours”)
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Special cases of risk attitudes

The constant absolute risk aversion (CARA) utility function is

u(x) = −e−αx (15)

To see why:

u′(x) = αe−αx (16)

u′′(x) = −α2e−αx (17)

rA(x) = −u′′(x)

u′(x)
= α (18)

The simple form for rA(x) makes this a convenient one to work with
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Special cases of risk attitudes

The constant relative risk aversion (CRRA) utility function is

u(x) =
x1−ρ

1− ρ
(19)

To see why:

u′(x) = x−ρ (20)

u′′(x) = −ρx−ρ−1 (21)

rA(x) = −xu′′(x)

u′(x)
= ρ (22)

For ρ = 1 we have an even more special case of CRRA: u(x) = ln x
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Comparing risk aversion

Figure: More curvature of Bernoulli function means more risk averse
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Aumann and Serrano (2008)

Authors propose a way to measure the riskiness of a gamble

A gamble here is a random variable with a positive expectation but
some negative values

For some gamble, find the CARA utility function such that the DM
would be indifferent between taking the gamble or not

The riskiness of a gamble is the reciprocal of the absolute risk
aversion of that DM
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Stochastic dominance
Take two random variables, x and y, with cumulative distribution functions
F and G respectively

We say that F first order stochastically dominates G if every vN-M
EU maximizer with monotone preferences prefers F to G

I Equivalently: F FOSD G if and only if F (η) ≤ G (η) for every η
I The idea here is that F gives more than G for every realization of the

random variable

Say that F and G have the same mean. We say that x second order
stochastically dominates y if every risk-averse vN-M EU maximizer
prefers F to G

I Equivalently: G is a mean-preserving spread of F
I Equivalently:

∫ η

a
G (x)dx ≥

∫ η

a
F (x)dx for all η ≥ 0

The problem with these concepts is that they aren’t general enough:
lots of things cannot be compared by these measures

The same is true of heuristics like ‘see if it has a higher mean’ or ‘see
if its worse outcome is better than the other option’s best outcome’

Hence the need for something like Aumann-Serrano
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Risk aversion and expected utility
Rabin (2000) and subsequently Rabin (2001) and Rabin & Thaler (2001)
invoke risk aversion to challenge expected utility theory. Would you accept
a gamble that gave a 50-50 chance of winning $11 or losing $10?

Curvature of the Bernoulli function required to explain a “risk-averse
EU maximizer” rejecting above gamble implies he also rejects a 50-50
gamble between losing $100 and winning an infinite amount.

Relies crucially on “lifetime wealth” being the object of interest:
again assumption on “consequences” is an inescapable auxiliary to
any statement one makes about expected utility theory

Watt (2002), Palacios-Huerta & Serrano (2006): and if the DM was
truly considering lifetime wealth, best empirical estimates of level of
risk aversion are incompatible with rejection of the small-stakes
gambles

Accepting large gambles is not evidence that a DM is not a
risk-averse EU maximizer unless the evidence for rejecting small
gambles is compelling
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Demand for insurance

Consider a risk-averse expected utility maximizer who is deciding whether
to buy insurance. She has initial wealth W , and with probability 1

2 she will
suffer a loss of L. Insurance is available that covers the loss when it
occurs; this insurance costs C .

Assume outcome is final wealth. What is her expected utility if she buys
the insurance? If she doesn’t buy? If C = 1

2L, will she buy?

EU(buy) =
1

2
u(W − L + L− C ) +

1

2
u(W − C ) (23)

= u(W − C ) (24)

EU(don′t) =
1

2
u(W − L) +

1

2
u(W ) (25)

Since the DM is risk averse, she will buy if C = 1
2 .
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Demand for insurance

More general version of the same problem. She has initial wealth W , and
there is some probability p that she will suffer a loss of L. Insurance is
available that pays $q in the event of a loss, and the premium per dollar of
coverage is π, so that q dollars of coverage costs $πq. Assume that
insurance companies are competitive and so make zero profit.

How much coverage (q) will she buy?

This is quite a complicated problem, so we will proceed in steps (in an
exam you would be asked each step in turn).
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Demand for insurance

Utility maximization problem (remember consumer chooses q):

max
q

EU = pu(W − L− πq + q) + (1− p)u(W − πq) (26)

Derivative with respect to q, set equal to zero; optimal choice q∗ solves:

pu′(W − L + q∗(1− π))(1− π)− (1− p)u′(W − πq∗)π = 0 (27)

⇒ u′(W − L + q∗(1− π))

u′(W − πq∗)
=

(1− p)

p

π

1− π
(28)
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Demand for insurance

Firm’s expected profit is:

(1− p)πq − p(πq − q) (29)

Zero profit assumption implies:

(1− p)πq − p(πq − q) = 0 (30)

π − πp = p − πp (31)

π = p (32)

Zero profit for insurer implies actuarially fair premium: cost of policy is
equal to expected value.
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Demand for insurance

Putting that in the consumer’s first order condition:

u′(W − L + q∗(1− π))

u′(W − πq∗)
=

(1− p)

p

π

1− π
(33)

⇒ u′(W − L + q∗(1− π)) = u′(W − πq∗) (34)

Since a strictly risk-averse consumer has u′′ < 0, this implies:

W − L + q∗(1− π) = W − πq∗ (35)

⇒ q∗ = L (36)

The consumer insures against all losses.
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Demand for insurance

So what?

Note first that EU makes this little toy model tractable

Firm implicitly risk-neutral, consumer risk-averse: socially cheaper for
the firm to bear the whole risk

But what if consumer’s actions could affect the probability of loss?
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Measuring risk aversion in the lab

Key considerations in getting risk aversion in the course of an experiment

Might be concerned that hypothetical responses are different than
real cash stakes

Might be concerned that responses with small stakes wouldn’t
generalize upwards

Might be concerned that the order in which you ask questions matters
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Measuring risk aversion in the lab

Holt and Laury (2002) approach to getting at experimental subjects’ risk
aversion: run treatments with the following stakes but also 20x, 50x, and
90x these stakes, with both hypothetical and real treatments

175 subjects (half undergrads, one third MBA students, 17% business
school faculty) at 3 universities for lower stakes; 37 subjects for the higher
stakes experiments at 1 university
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Holt and Laury (2002)
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An example from Salgado (2006)

An example of a Holt-Laury choice table:
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An example from Salgado (2006)

Position in the overall experimental design (note prob. of payout):
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Is risk aversion a stable characteristic?

Berg, Dickhaut, and McCabe (2005): measured risk preference may
vary according to the institution

I U Minnesota business school undergrads
I Three institutions; value of prize randomly drawn for each subject

1 BDM procedure to elicit selling price for a gamble
2 English clock auction to elicit selling price for a gamble
3 First-price auction to elicit bids for an object

Hannah Schildberg-Hörisch (2018) summarizes work on how risk
preferences change over a person’s life cycle
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Berg, Dickhaut, and McCabe (2005)
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Berg, Dickhaut, and McCabe (2005)
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Schildberg-Hörisch (2018)
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Prospect Theory

Prospect Theory is the most famous example of a model that relaxes the
restrictions on preferences (Kahneman & Tversky 1979). It begins from
their interpretation of some observations from choice experiments:

“Certainty effect”: people overweigh certain outcomes relative to
‘probable’ outcomes

“Reflection effect”: people think in terms of gains and losses; risk
aversion over gains mirrored by risk loving over losses - people
overweigh certain losses

“Isolation effect”: simplify choice problem by disregarding ‘common’
(common-ish?) components

Use these ‘violations’ to reformulate the mechanics of a maximizing model.
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Certainty effect

Figure: Reducing prob. from 1 to 0.25 has a bigger effect than same
proportionate reduction from 0.8 to 0.2

In Russian roulette, would you pay more to reduce the number of
bullets from 4 to 3 as you would to reduce the number from 1 to 0?
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Reflection effect

Figure: Subjects on average display risk aversion for positive prospects and risk
loving for negative ones
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Reflection effect

Figure: ...even when the final cash position is the same (framing, thinking in
terms of gains and losses)
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Reflection effect
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Isolation effect

Figure: Small probabilities not well understood, overweighed... 0.001 and 0.002
‘look similar’ so the DM focuses on the prize amount
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Small probabilities, small insurance
‘Overweighting’ of small probabilities (distinct from overestimation of
prob. of rare events)

Figure: 14: prefer lottery ticket over expected value of the ticket; 14’: prefer a
small loss over a small chance of large loss
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Prospect Theory

Idea is that people use an “editing” phase to understand and simplify the
choice in their mind; “evaluation” phase to decide on something

Value of edited prospect expressed in terms of π and v .

π: associated with each probability p a decision weight π(p). Impact
of p on value of prospect.

v : assigns to each outcome x a number v(x), subjective value of the
outcome. Outcomes are deviations from a reference point: v
measures gains and losses.

Think of prospects (x , p; y , q): at most two non-zero outcomes. x with
probability p, y with probability q, nothing with probability 1− p − q,
p + q ≤ 1.
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Prospect Theory

If (x , p; y , q) is a regular prospect (p + q < 1, x ≥ 0 ≥ y or x ≤ 0 ≤ y),
then

V (x , p; y , q) = π(p)v(x) + π(q)v(y), (37)

where v(0) = 0, π(1) = 1, π(0) = 0.

If p + q = 1 and either x > y > 0 or x < y < 0, then

V (x , p; y , q) = v(y) + π(p)[v(x)− v(y)]. (38)

Certain component plus value-difference.

What do the functions π and v look like?
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The value function

Figure: General shape of Prospect Theory value function
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The decision weight function

Figure: General shape of Prospect Theory decision weights
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Gonzalez & Wu (1999)

75% picked A; 37% picked C (ordering of the two questions
counterbalanced)
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Estimating the decision weight function

Gonzalez & Wu (1996, 1999): calibration of decision weight function with
experimental evidence

How to handle non-linear probability weighting?

Innovation is to avoid having to make assumptions about the exact
functional form of the value and decision weight functions

Boil the issue down to common-consequence conditions on concavity
vs. convexity of the decision weight function

Test concavity vs. convexity with ‘ladders’ that add common
consequences to subsequent choices

Each subject saw four of the eight ‘rungs’; order of questions
randomized; order of options counter-balanced

Between and within subject analyses possible
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Gonzalez & Wu (1996)
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Gonzalez & Wu (1996)

Inverted U shape consistent with concave-then-convex decision weight
function
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Gonzalez & Wu (1996)
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Gonzalez & Wu (1996)
Decision weight function concave up to around p = 0.4 and convex
after

A linear functional form with discontinuities at the endpoints
performs worse than a strictly nonlinear form

The fit to Tversky & Kahneman (1992) and Prelec (1995)
single-parameter functional forms yields a result that substantially
improves on EUT in explaining choices

Gonzalez & Wu (1999):
I Two-parameter function: one controlling curvature and one controlling

height of the probability weighting function
I ‘Discriminability’: diminishing sensitivity to changes in probabilities

away from the endpoints (curvature of the S)
F Experts are more linear (Thaler & Ziembra 1988 horse race gamblers;

Fox, Rogers, & Tversky 1996 options traders)

I ‘Attractiveness’: for a given probability different DMs might find the
gamble more or less attractive, i.e. over- or under-weight differently
(height of the S)
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Reference points as human experience

The two interior squares are the same color

Jim Campbell (UC Berkeley) Risk Summer 2021 72 / 105



Reference points as human experience

The two interior squares are the same color

Jim Campbell (UC Berkeley) Risk Summer 2021 72 / 105



Loss aversion

The ‘reflection effect’ is closely related to the general concept of loss
aversion

Adam Smith, 1759

“Pain... is, in almost all cases, a more pungent sensation than the
opposite and correspondent pleasure. The one almost always depresses us
much more below the ordinary, or what may be called the natural state of
our happiness, than the other ever raises us above it.”

Loss aversion: utility loss from losing something is more than the
utility gain from getting it

Unifying idea that can explain reflection effect, endowment effect,
status quo bias (from our earlier notes)
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A model of loss aversion

Two things that the DM cares about: bundles have amounts (x1, x2)

DM has a reference point for each of them: (r1, r2)

Utility will depend on amounts relative to reference points:

ui (xi − ri ) if xi > ri (39)

−λui (ri − xi ) if xi < ri (40)

So u1(1)− λu2(1) is the utility of giving up one of good 2 to get one
more of good 1

Consider two possibilities:
1 WTP for good 2: how much of good 1 would DM be willing to give up

for one unit of good 2?
2 WTA for good 2: how much of good 1 would DM be willing to accept

in exchange for one unit of good 2?
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A model of loss aversion

Assume utility is linear in good 2

DM is happy to pay z to receive a unit of good 1 if

u2(1)− λz > 0 (41)

z <
u2(1)

λ
(42)

DM is happy to accept y to give up a unit of good 1 if

−λu2(1) + y > 0 (43)

y > λu2(1) (44)

Ratio of WTP to WTA is z
y = 1

λ2 : WTP¡WTA when λ > 1
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Loss aversion for cash gambles

Assume utility is linear in a single good, cash

Certainty equivalent of 50-50 gamble to gain 2z or gain 0

u(CE ) =
1

2
u(2z) +

1

2
u(0) (45)

CE = z (46)

Certainty equivalent of 50-50 gamble to gain z or lose z

u(CE ) =
1

2
u(z) +

1

2
(−λ)u(z) (47)

CE < 0 if λ > 1 (48)

This λ method models the ‘warp’ around 0

Jim Campbell (UC Berkeley) Risk Summer 2021 76 / 105



Loss aversion for cash gambles

Assume utility is linear in a single good, cash

Certainty equivalent of 50-50 gamble to gain 2z or gain 0

u(CE ) =
1

2
u(2z) +

1

2
u(0) (45)

CE = z (46)

Certainty equivalent of 50-50 gamble to gain z or lose z

u(CE ) =
1

2
u(z) +

1

2
(−λ)u(z) (47)

CE < 0 if λ > 1 (48)

This λ method models the ‘warp’ around 0

Jim Campbell (UC Berkeley) Risk Summer 2021 76 / 105



Measuring loss aversion
Dean and Ortoleva (2014): take same group of subjects and measure
λ parameter in lottery problems and the WTP/WTA ratio of the
endowment effect
Measuring λ (uses CRRA parameterization; Abdellaoui et al. 2008)

I Questions on risky bets used to estimate CRRA utility function for gains
I Certainty equivalence of mirror lotteries in loss domain used to

estimate CRRA utility function for losses
I Elicit values of gain to make subject indifferent between $0 and a

lottery that pays the gain or a loss of $6, $8, or $10 with 50-50 prob.
I Use these to estimate the difference in slope between loss and gain

domain utility functions

Measuring WTP/WTA gap:
I WTP/WTA gap for buying vs. selling a lottery ticket that paid $10

with 50% chance and $0 with 50% chance
I Elicit certainty equivalent for 50-50 lottery between $10 and $0 (WTA)
I Endow subjects with additional $10 and elicit how much of the

additional $10 they would pay to buy the 50-50 lottery between $10
and $0 (WTP)

Correlation of 0.63 between the two measures within subjects
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Some examples of phenomena consistent with loss aversion
Equity premium puzzle (Benartzi and Thaler 1995)

I Return on stocks much higher than on bonds to an extent hard to
explain with just risk aversion

I Loss aversion plus ‘narrow bracketing’ (evaluating portfolio items
separately rather than as a whole) can explain

I Estimated λ from calibrated model of 2.25, similar to experiments

Labor supply (Camerer et al. 1997)
I Taxi drivers rent cars daily and face earnings fluctuations—some days

are better than others
I Standard theory predicts work more on good days because return is

higher
I But actually work more on bad days, consistent with loss aversion

relative to a daily earnings reference point

Disposition effect (Odean 1998)
I Losing stocks held for median of 124 days vs. 104 days for winning

stocks
I But winners return the next year averages 11.6% vs. 5% for losers
I Buying price becomes a reference point
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Information aversion

An implication of loss aversion is that DM may try to avoid intermediate
information

Take u(x) = x and λ = 2.5

Gamble: two sequential 50-50 chances of +200 or -100 (Samuelson
1963)

Utility depends on whether you learn the intermediate result or just
the aggregate

1

4
(200 + 200) +

1

2
(200− λ100) +

1

4
(−λ100− λ100) = −200 (49)

1

4
(400) +

1

2
(100) +

1

4
(−λ200) = 25 (50)

Check a risky asset less when times are turbulent (Andries and
Haddad 2015)

Observed in experimental setting in Gneezy and Potter (1997)

Jim Campbell (UC Berkeley) Risk Summer 2021 79 / 105



Information aversion

An implication of loss aversion is that DM may try to avoid intermediate
information

Take u(x) = x and λ = 2.5

Gamble: two sequential 50-50 chances of +200 or -100 (Samuelson
1963)

Utility depends on whether you learn the intermediate result or just
the aggregate

1

4
(200 + 200) +

1

2
(200− λ100) +

1

4
(−λ100− λ100) = −200 (49)

1

4
(400) +

1

2
(100) +

1

4
(−λ200) = 25 (50)

Check a risky asset less when times are turbulent (Andries and
Haddad 2015)

Observed in experimental setting in Gneezy and Potter (1997)

Jim Campbell (UC Berkeley) Risk Summer 2021 79 / 105



Gneezy & Potter (1997)
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Karlsson, Loewenstein, and Seppi (2009)

‘Ostrich effect’: investors log in to their accounts less when stocks are
down
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Paper vs. realized losses

Imas (2016) dives a bit more into this by looking at risk-taking after paper
losses versus realized losses

128 undergraduates; $5 show up fee

Endowed with $8 in an envelope

4 rounds of investment decisions: how much of $2 to invest in a
lottery (25 cent increments); prob. 1

6 of winning 7 times that amount
or else lose it all

Implemented by public dice roll; note positive expected payoff

Treatments:
1 Realized: money changed hands after round 3 before last round
2 Paper: continued on to round 4 as normal (time between rounds

equalized from realized treatment)
3 Paper Social: informed verbally about cash position after round 3
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Investment change after 3 losses
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Paper vs. realized losses

Next: some robustness checks

Another lab experiment with Realized and Paper S but also a couple
of new treatments

‘Transfer’ treatment: participants were not given envelope of cash at
the start; after round 3 presented with their earnings up to that point

‘Interrupt’ treatment: similar to Paper S but had a 5 minute filler
task between rounds 3 and 4

An Amazon Mechanical Turk experiment with just Paper vs Realized
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Investment change after 3 losses
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Reference dependence and effort
One possible way to identify reference dependence in data is via its effect
on effort

Define effort as e with cost c(e), reference point r , relative weight on
reference point η

Above and below reference point individual maximizes:

max
e

e + η(e − r)− c(e) for e ≥ r (51)

max
e

e + ηλ(e − r)− c(e) for e < r (52)

Optimal choice will balance marginal benefit and marginal cost of
effort:

1 + η = c ′(e∗) for e ≥ r (53)

1 + ηλ = c ′(e∗) for e < r (54)
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Reference dependence and effort

Effort has a higher marginal utility below the reference point than above

Optimal ‘easing off’ above the reference point relative to ‘pushing
harder’ below

In data would show up as:
1 Bunching at the reference point e∗ = r
2 Missing mass of the probability distribution below the reference point

compared to above
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Evidence of loss aversion in tax returns (Rees-Jones 2018)

Spike at zero in U.S. tax return data consistent with loss aversion
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Reference points for marathon runners (Allen et al. 2017)

Bunching at ‘round number’ target reference points
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Reference points for marathon runners (Allen et al. 2017)

Runners near a reference point speed up or slow down near the end
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Subjective Expected Utility

SEU is distinct from EU in situations of uncertainty rather than risk:
probabilities are not known

States of the world: an exclusive and exhaustive list of all the
outcomes that could happen

Acts: actions defined by what outcome they yield in each state

SEU is a simple extension of EU:

1 Associate each state of the world with a probability

2 Associate each prize with a utility

3 Compute the Expected Utility of each act using the probabilities and
utilities from steps 1 and 2

4 Choose the act with the highest Expected Utility
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Subjective Expected Utility definition

Subjective Expected Utility

Let X be the set of prizes, Ω be a finite set of states, and F be the
resulting set of acts f : Ω→ X .
The preference relation % on F has a Subjective Expected Utility
representation if there exists utility function u : X → R and probability
function π : Ω→ [0, 1] such that

∑
ω∈Ω π(ω) = 1 and f % g if and only if∑

ω∈Ω

π(ω)u(f (ω)) ≥
∑
ω∈Ω

π(ω)u(g(ω)) (55)
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Rank dependent utility

RDU gives a generalization of EU that allows the weight on a prize to
depend on how good the prize is

In RDU model the probability weighting used by the DM depends on
two things:

1 The probability with which a prize arrives
2 The rank of the prize in the lottery relative to other prizes

The weight attached to the top prize is whatever the decision weight
on its probability is

The weight on nth best is the weight on probability of
I getting something at least as good as it,
I minus getting something better than it
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Example (following Mark Dean’s notes)

Lottery L with three prizes: 10 with probability 0.1, 5 with probability 0.7,
0 with probability 0.2

RDU(L) =ψ(p1)u(x1) (56)

+ (ψ(p1 + p2)− ψ(p1))u(x2) (57)

+ (ψ(p1 + p2 + p3)− ψ(p1 + p2))u(x3) (58)

(59)

For this example:

RDU(L) =ψ(0.1)u(10) (60)

+ (ψ(0.8)− ψ(0.1))u(5) (61)

+ (ψ(1)− ψ(0.8))u(0) (62)

If ψ = 1 we have EUT

Jim Campbell (UC Berkeley) Risk Summer 2021 94 / 105



Example (following Mark Dean’s notes)

Lottery L with three prizes: 10 with probability 0.1, 5 with probability 0.7,
0 with probability 0.2

RDU(L) =ψ(p1)u(x1) (56)

+ (ψ(p1 + p2)− ψ(p1))u(x2) (57)

+ (ψ(p1 + p2 + p3)− ψ(p1 + p2))u(x3) (58)

(59)

For this example:

RDU(L) =ψ(0.1)u(10) (60)

+ (ψ(0.8)− ψ(0.1))u(5) (61)

+ (ψ(1)− ψ(0.8))u(0) (62)

If ψ = 1 we have EUT

Jim Campbell (UC Berkeley) Risk Summer 2021 94 / 105



Allais & RDU (following Mark Dean’s notes)

Revisiting the Allais paradox:

1 What amount x > 1, 000, 000 would make DM indifferent between:

L1: 100% chance of receiving $1m
L′1: 10% chance of receiving x , 89% chance of receiving
$1m, 1% chance of receiving nothing

2 Choose one of the following:

L2: 11% chance of receiving $1m, 89% chance of
receiving nothing.
L′2: 10% chance of receiving z , 90% chance of receiving
nothing.

EUT requires x = z while Allais manifests as x > z ; let’s assume u(x) = x
for convenience and check what RDU has to say
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Allais & RDU

RDU of L1:

ψ(1)1, 000, 000 = 1, 000, 000 (63)

RDU of L′1:

ψ(0.1)x + (ψ(0.99)− ψ(0.1))1, 000, 000 + (ψ(1)− ψ(0.99))0 (64)

For DM to be indifferent between these:

1m > ψ(0.1)x + (ψ(0.99)− ψ(0.1))1m + (ψ(1)− ψ(0.99))0 (65)

⇒ 1m > ψ(0.1)x + (ψ(0.99)− ψ(0.1))1m (66)

⇒ x =
1− (ψ(0.99)− ψ(0.1))

ψ(0.1)
1m (67)

Jim Campbell (UC Berkeley) Risk Summer 2021 96 / 105



Allais & RDU

RDU of L1:

ψ(1)1, 000, 000 = 1, 000, 000 (63)

RDU of L′1:

ψ(0.1)x + (ψ(0.99)− ψ(0.1))1, 000, 000 + (ψ(1)− ψ(0.99))0 (64)

For DM to be indifferent between these:

1m > ψ(0.1)x + (ψ(0.99)− ψ(0.1))1m + (ψ(1)− ψ(0.99))0 (65)

⇒ 1m > ψ(0.1)x + (ψ(0.99)− ψ(0.1))1m (66)

⇒ x =
1− (ψ(0.99)− ψ(0.1))

ψ(0.1)
1m (67)

Jim Campbell (UC Berkeley) Risk Summer 2021 96 / 105



Allais & RDU

RDU of L1:

ψ(1)1, 000, 000 = 1, 000, 000 (63)

RDU of L′1:

ψ(0.1)x + (ψ(0.99)− ψ(0.1))1, 000, 000 + (ψ(1)− ψ(0.99))0 (64)

For DM to be indifferent between these:

1m > ψ(0.1)x + (ψ(0.99)− ψ(0.1))1m + (ψ(1)− ψ(0.99))0 (65)

⇒ 1m > ψ(0.1)x + (ψ(0.99)− ψ(0.1))1m (66)

⇒ x =
1− (ψ(0.99)− ψ(0.1))

ψ(0.1)
1m (67)

Jim Campbell (UC Berkeley) Risk Summer 2021 96 / 105



Allais & RDU

RDU of L2:

ψ(0.11)1, 000, 000 + (1− ψ(0.11))0 (68)

RDU of L′2:

ψ(0.1)z + (1− ψ(0.1))0 (69)

For DM to be indifferent between these:

ψ(0.11)1, 000, 000 + (1− ψ(0.11))0 = ψ(0.1)z + (1− ψ(0.1))0 (70)

⇒ ψ(0.11)1, 000, 000 = ψ(0.1)z (71)

⇒ z =
ψ(0.11)

ψ(0.1)
1m (72)
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Allais & RDU

So Allais paradox manifests if:

x > z (73)

1− (ψ(0.99)− ψ(0.1))

ψ(0.1)
>
ψ(0.11)

ψ(0.1)
(74)

ψ(1)− ψ(0.99) > ψ(0.11)− ψ(0.1) (75)

That is: the increase in decision weight from 99% to 100% is bigger than
the weight of going from 10% to 11%

As an example: ψ(p) = p2

12 − 0.992 ≈ 0.0199 > 0.0021 ≈ 12 − 0.11

ψ(p) = p1: 1− 0.99 = 0.01 > 0.01 = 0.11− 0.1

ψ(p) = p0.5: 10.5 − 0.990.5 ≈ 0.005 < 0.015 ≈ 0.110.5 − 0.10.5

Jim Campbell (UC Berkeley) Risk Summer 2021 98 / 105



Allais & RDU

So Allais paradox manifests if:

x > z (73)

1− (ψ(0.99)− ψ(0.1))

ψ(0.1)
>
ψ(0.11)

ψ(0.1)
(74)

ψ(1)− ψ(0.99) > ψ(0.11)− ψ(0.1) (75)

That is: the increase in decision weight from 99% to 100% is bigger than
the weight of going from 10% to 11%

As an example: ψ(p) = p2

12 − 0.992 ≈ 0.0199 > 0.0021 ≈ 12 − 0.11

ψ(p) = p1: 1− 0.99 = 0.01 > 0.01 = 0.11− 0.1

ψ(p) = p0.5: 10.5 − 0.990.5 ≈ 0.005 < 0.015 ≈ 0.110.5 − 0.10.5

Jim Campbell (UC Berkeley) Risk Summer 2021 98 / 105



Allais & RDU

So Allais paradox manifests if:

x > z (73)

1− (ψ(0.99)− ψ(0.1))

ψ(0.1)
>
ψ(0.11)

ψ(0.1)
(74)

ψ(1)− ψ(0.99) > ψ(0.11)− ψ(0.1) (75)

That is: the increase in decision weight from 99% to 100% is bigger than
the weight of going from 10% to 11%

As an example: ψ(p) = p2

12 − 0.992 ≈ 0.0199 > 0.0021 ≈ 12 − 0.11

ψ(p) = p1: 1− 0.99 = 0.01 > 0.01 = 0.11− 0.1

ψ(p) = p0.5: 10.5 − 0.990.5 ≈ 0.005 < 0.015 ≈ 0.110.5 − 0.10.5

Jim Campbell (UC Berkeley) Risk Summer 2021 98 / 105



Ellsberg evidence

Halevy (2007) conducts a series of experiments to explore the link between
attitudes to ambiguity and to compound objective lotteries

Four urns, each with 10 red or black balls
1 5 red and 5 black (risk)
2 Unknown composition (ambiguity)
3 Number of red balls uniformly distributed between 0 and 10
4 Either 10 red or 10 black balls with equal probability

Subjects asked to bet on a color being drawn from each urn; win $2 if
correct, lose nothing if wrong

Then subjects had the option to sell each of the bets
I Asked to state four minimum prices to sell, between $0 and $2
I For each urn the computer chose a random number between $0 and $2
I If random number was higher than the min. price, subject got the price

for the sale; if not, their earnings depended on the bet
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Maxmin Expected Utility

Gilboa and Schmeidler (1989) suggest a model that can explain ambiguity
aversion

Premise is pessimistic: what’s the worst case? What if the world is
rigged against you?

Think of the range of possible probability distributions that could
apply

Evaluate your chosen act using the worst of the distributions

Maxmin Expected Utility: maximize the minimum utility you could
get across different probability distributions
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Maxmin Expected Utility: example

A modified Halvey example:

Choice 1: risky bag
I Bag has 20 red and 20 black chips
I DM makes a $10 bet on a color of their choice
I Elicit amount $x such that DM is indifferent between keeping the bet

and receiving $x

Choice 2: ambiguous bag
I No information about number of red and black tokens
I DM makes a $10 bet on a color of their choice
I Elicit amount $y such that DM is indifferent between keeping the bet

and receiving $y

The Ellsberg manifestation here is that x is bigger than y : willing to
take a smaller sure thing in exchange for the ambiguous bag

The DM having subjective probability assessments here is not enough
since one of the two cases (red or black) must have prob. of at least
0.5 in the ambiguous case
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Maxmin Expected Utility: example

Let u(x) = x and say that the DM holds a belief that the probability of a
red ball in the ambiguous bag is between 0.25 and 0.75

EU of bet on the risky bag is 1
2u(10) + 1

2u(0) = 5; MEU is the same
since there is only one prob. distribution in play here

MEU of bet on red from the ambiguous bag is given by

min
π(r)∈[0.25,0.75]

π(r)u(10) = 0.25u(10) = 2.5 (76)

MEU of bet on black from the ambiguous bag is given by

min
π(r)∈[0.25,0.75]

(1− π(r))u(10) = 0.25u(10) = 2.5 (77)

Max utility from bet on ambiguous bag is lower than the bet on the
risky bag
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Maxmin Expected Utility definition

Maxmin Expected Utility

Let X be the set of prizes, Ω be a finite set of states, and F be the
resulting set of acts f : Ω→ X .
The preference relation % on F has a Maxmin Expected Utility
representation if there exists utility function u : X → R and a convex set
of probability functions Π such that f % g if and only if

min
π∈Π

∑
ω∈Ω

π(ω)u(f (ω)) ≥ min
π∈Π

∑
ω∈Ω

π(ω)u(g(ω)) (78)
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MEU and ‘no trade’

An application to finance: no trade price regions (Dow, James, and
Werlang 1992)

Asset with price p pays $10 if company is successful or $0 if not

DM can either buy 1 or short sell 1 of this asset

Buy: pay p and get $10 in the success case

Short sell: receive p but have to pay $10 in the success case

Say that the DM thinks there’s a range of possible probabilities of success:
from a low of π∗(s) to a strictly higher high of π∗(s)
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MEU and ‘no trade’

Option 1: buy the asset

Use the probability π∗(s), the worst-case probability of success

MEU(buy) = π∗(s)(10− p) + (1− π∗(s))(−p) > 0 (79)

if p < 10π∗(s) (80)

Option 2: sell the asset

Use the probability π∗(s), the best-case probability of success

MEU(sell) = π∗(s)(p − 10) + (1− π∗(s))(p) > 0 (81)

if p > 10π∗(s) (82)

In the region 10π∗(s) < p < 10π∗(s) the DM will neither buy nor sell: this
is the no trade region for the price of this asset for this DM
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